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The problem of phase retrieval from intensity measurements plays an important role in many fields of 
physical research, e.g. optics, electron and x-ray microscopy, crystallography, diffraction tomography and 
others. In practice the recorded images contain information only on the intensity distribution I(x,y) = Ψ∗Ψ∗= 
|A|2 of the imaging wave function Ψ = A∗exp(-iϕ) and the phase information ϕ(x,y) is usually lost. In 
general, the phase problem can be solved either by special holographic/interferometric methods, or by non-
interferometric approaches based on intensity measurements in far Fraunhofer zone or in the Fresnel zone at 
two adjacent  planes orthogonal to the optical axis. The latter approach uses the transport-of-intensity 
equation (TIE) formalism, introduced originally by Teague [1] and developed later in [2]. Applications of 
TIE to nonmagnetic materials and magnetic inductance mapping were successfully made in [3,4]. However, 
this approach still needs further improvement both in mathematics and in practical solutions, since the result 
is very sensitive to many experimental parameters. 
The TIE is derived in paraxial (Fresnel) wave approximation and utilizes a relation of z-gradient for intensity 
distribution I(x,y) to phase distribution ϕ(x,y) in imaging plane via the 2nd order elliptic differential equation  

with boundary conditions I(r⊥)>0 inside Ω and I=0 on and outside δΩ=Γ area. The Eq.(1) can be reduced to 
Poisson equation via auxiliary equation ∇Ψ=I∇ϕ. It is noted [1,2] that for Eq.(1) the low of energy 
conservation must hold (Eq.(2)). Recently it was shown [3,4] that serious math problems of Eq.(1) with finite-
elements methods can be bypassed by computing of inverse Laplacian ∇ -2 via fast Fourier transform (FFT), 
which gives however only a special solution of Eq.(1). Therefore a problem of unique solution of Eq.(1) in 
terms of Dirichlet-Neumann boundary conditions remains. Notice that Fourier transform operates only on 
functions with an infinite support and any real image has to be adopted to FFT by imposing an additional 
constrains of periodicity f(x,y) = f(x+2πn,y+2πm) that essentially spoil the recovered ϕ-function at the image 
boundaries. Hence, the practical way of solving problem is to adopt the Neumann boundary conditions of 
Eq.(1) to those imposed by the FFT and to use it for determination of unknown coefficients of unique 
harmonic function H'(r⊥), with ∇ 2H=0, which contributes to total solution of Eq.(1) as Φ  = ϕ(FFT) + H'. 
This can be realized by two ways. The first one is to apply a zero padding of image using the convolution 
theorem (a "bad" example is given in Fig1d). The recovered phase in this case suffers from periodicity 
constrains and is a sensitive function of "zero" mask to the wrap-around problem. The second one, which is a 
subject of present paper, is to apply the symmetry principles of FFT-solution to problem (1)-(2). By applying 
the Stoke's theorem we found that Eq.(2) can be reduced to vanished line integral on Γ under condition∇Ψ = 
even, which gives a non-spoiled solution of problem (1) in entire area  Ω by constructing the recovered phase 
as Φ  =even. This also dramatically reduces the harmonic function H, ideally, down to one fitting term D(x2-
y2) The calculation should be performed on 2x2Ω image domain. Some examples of TIE-FFT solution for 
TEM-phase retrieval of non-magnetic(Fig.1) and magnetic samples (Fig.2) will be discussed. The stability of 
TIE-solution to noise and to practical image alignment and distortions will be addressed as well.  
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Fig.1 (a) Lacey carbon film 
with nanoparticles used for 
the phase recovery from 2 
defocused images,  
(b) reconstructed phase ϕ 
obtained by the “even”  
TIE solution on the domain 
area 2x2Ω  ,  
(c) the same phase as (b) 
displayed by the equal 
potential contours with 2π 
spacing, (d) similar solution 

of TIE on the 1x1Ω  area 
with  a mask of 60 pixels   
(Ω=512x512pixels). 
 Notice,  in both cases 
(c,d) recovered phase 
reproduces well 
structure features and 
thickness variations in 
(a) ,  however, in case 
(d) solution appears to 
be highly spoiled at the 
image boundaries. 
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Fig.2  TIE phase retrieval in hard magnet Nd2Fe14B: (a) out-of-focus image showing domain walls,  
(b) the difference for two out-of-focus images, (c) recovered phase as potential contours  with 2π spacing, 
(d - e ) By and Bx components of the total magnetization (as simple gradxϕ and gradyϕ  respectively), (f) 
thickness map from the same area with contour spacing of 10 nm. Notice, phase in (c) doesn’t follow the 
thickness profile (f) because of significant contribution of magnetostatic potential in the Nd-Fe-B sample. 


